CnPack Forum


 
Subject: Delphi 源码涂鸦:Math.pas
skyjacker
版主
Rank: 7Rank: 7Rank: 7
茶农


UID 2239
Digest Posts 9
Credits 617
Posts 269
点点分 617
Reading Access 100
Registered 2006-6-8
Status Offline
Post at 2007-11-20 16:48  Profile | Blog | P.M.  | QQ
Delphi 源码涂鸦:Math.pas

{ *********************************************************************** }
{                                                                         }
{ Delphi / Kylix Cross-Platform Runtime Library                           }
{                                                                         }
{ Copyright (c) 1996, 2001 Borland Software Corporation                   }
{                                                                         }
{ *********************************************************************** }

{* |<PRE>
================================================================================
* 软件名称:Delphi 源码涂鸦
* 单元名称:数学函数 Math.pas
* 单元作者:SkyJacker(HeMiaoYu@gmail.com)
* 备    注:借用 Delphi Source 的宝地涂鸦,请原谅我的无知
* 开发平台:Delphi 6.0 up2
* 兼容测试:无
* 本 地 化:
* 单元标识:V0.01
* 发布地址:Http://bbs.cnpack.org
* 发布目的:永久备录、不断充实,告别 Ghost 还原之烦恼
* 单元优点:
* 单元缺点:酒香也怕巷子深
* 使用建议:我也不会用
* 大惊小怪:这里居然有 www.efg2.com
* 修改记录:2007.11.20
*               发布涂鸦 V0.01
================================================================================
|</PRE>}

unit Math;

{ This unit contains high-performance arithmetic, trigonometric, logorithmic,
  statistical, financial calculation and FPU routines which supplement the math
  routines that are part of the Delphi language or System unit.

  References:
  1) P.J. Plauger, "The Standard C Library", Prentice-Hall, 1992, Ch. 7.
  2) W.J. Cody, Jr., and W. Waite, "Software Manual For the Elementary
     Functions", Prentice-Hall, 1980.
  3) Namir Shammas, "C/C++ Mathematical Algorithms for Scientists and Engineers",
     McGraw-Hill, 1995, Ch 8.
  4) H.T. Lau, "A Numerical Library in C for Scientists and Engineers",
     CRC Press, 1994, Ch. 6.
  5) "Pentium(tm) Processor User's Manual, Volume 3: Architecture
     and Programming Manual", Intel, 1994

  Some of the functions, concepts or constants in this unit were provided by
  Earl F. Glynn (www.efg2.com) and Ray Lischner (www.tempest-sw.com)

  All angle parameters and results of trig functions are in radians.

  Most of the following trig and log routines map directly to Intel 80387 FPU
  floating point machine instructions.  Input domains, output ranges, and
  error handling are determined largely by the FPU hardware.

  Routines coded in assembler favor the Pentium FPU pipeline architecture.
}

{$N+,S-}

interface

uses SysUtils, Types;

const   { Ranges of the IEEE floating point types, including denormals }
        { IEEE 浮点数的范围 }
  MinSingle   =  1.5e-45;
  MaxSingle   =  3.4e+38;
  MinDouble   =  5.0e-324;
  MaxDouble   =  1.7e+308;
  MinExtended =  3.4e-4932;
  MaxExtended =  1.1e+4932;
  MinComp     = -9.223372036854775807e+18;
  MaxComp     =  9.223372036854775807e+18;

  { The following constants should not be used for comparison, only
    assignments. For comparison please use the IsNan and IsInfinity functions
    provided below. }
  { 下面的常量不能用于比较, 只能用于赋值。
    为了比较可以使用函数 IsNan IsInfinity 无穷大 }
  NaN         =  0.0 / 0.0;
  (*$EXTERNALSYM NaN*)
  (*$HPPEMIT 'static const Extended NaN = 0.0 / 0.0;'*)
  Infinity    =  1.0 / 0.0;
  (*$EXTERNALSYM Infinity*)
  (*$HPPEMIT 'static const Extended Infinity = 1.0 / 0.0;'*)
  NegInfinity = -1.0 / 0.0;
  (*$EXTERNALSYM NegInfinity*)
  (*$HPPEMIT 'static const Extended NegInfinity = -1.0 / 0.0;'*)

{ Trigonometric functions 三角函数}
function ArcCos(const X: Extended): Extended;  { IN: |X| <= 1  OUT: [0..PI] radians }
function ArcSin(const X: Extended): Extended;  { IN: |X| <= 1  OUT: [-PI/2..PI/2] radians }

{ ArcTan2 calculates ArcTan(Y/X), and returns an angle in the correct quadrant.
  IN: |Y| < 2^64, |X| < 2^64, X <> 0   OUT: [-PI..PI] radians }
function ArcTan2(const Y, X: Extended): Extended;

{ SinCos is 2x faster than calling Sin and Cos separately for the same angle }
{ SinCos 函数比独立的调用 Sin Cos 来计算角度 速度快 }
procedure SinCos(const Theta: Extended; var Sin, Cos: Extended) register;
function Tan(const X: Extended): Extended;
function Cotan(const X: Extended): Extended;           { 1 / tan(X), X <> 0 }
function Secant(const X: Extended): Extended;          { 1 / cos(X) }
function Cosecant(const X: Extended): Extended;        { 1 / sin(X) }
function Hypot(const X, Y: Extended): Extended;        { Sqrt(X**2 + Y**2) }

{ Angle unit conversion routines }
{ 角度转换子程序 }
function RadToDeg(const Radians: Extended): Extended;  { Degrees := Radians * 180 / PI }
function RadToGrad(const Radians: Extended): Extended; { Grads := Radians * 200 / PI }
function RadToCycle(const Radians: Extended): Extended;{ Cycles := Radians / 2PI }

function DegToRad(const Degrees: Extended): Extended;  { Radians := Degrees * PI / 180}
function DegToGrad(const Degrees: Extended): Extended;
function DegToCycle(const Degrees: Extended): Extended;

function GradToRad(const Grads: Extended): Extended;   { Radians := Grads * PI / 200 }
function GradToDeg(const Grads: Extended): Extended;
function GradToCycle(const Grads: Extended): Extended;

function CycleToRad(const Cycles: Extended): Extended; { Radians := Cycles * 2PI }
function CycleToDeg(const Cycles: Extended): Extended;
function CycleToGrad(const Cycles: Extended): Extended;

{ Hyperbolic functions and inverses }
{ 双曲线函数和反转 }
function Cot(const X: Extended): Extended;             { simply calls Cotan }
function Sec(const X: Extended): Extended;             { simply calls Secant }
function Csc(const X: Extended): Extended;             { simply calls Cosecant }
function Cosh(const X: Extended): Extended;
function Sinh(const X: Extended): Extended;
function Tanh(const X: Extended): Extended;
function CotH(const X: Extended): Extended;
function SecH(const X: Extended): Extended;
function CscH(const X: Extended): Extended;
function ArcCot(const X: Extended): Extended;
function ArcSec(const X: Extended): Extended;
function ArcCsc(const X: Extended): Extended;
function ArcCosh(const X: Extended): Extended;         { IN: X >= 1 }
function ArcSinh(const X: Extended): Extended;
function ArcTanh(const X: Extended): Extended;         { IN: |X| <= 1 }
function ArcCotH(const X: Extended): Extended;
function ArcSecH(const X: Extended): Extended;
function ArcCscH(const X: Extended): Extended;

{ Logorithmic functions Log 函数 }
function LnXP1(const X: Extended): Extended; { Ln(X + 1), accurate for X near zero }
function Log10(const X: Extended): Extended;                    { Log base 10 of X }
function Log2(const X: Extended): Extended;                      { Log base 2 of X }
function LogN(const Base, X: Extended): Extended;                { Log base N of X }

{ Exponential functions }
{ 幂函数 指数函数 }

{ IntPower: Raise base to an integral power.  Fast. }
{ 求整数幂 快 }
function IntPower(const Base: Extended; const Exponent: Integer): Extended register;

{ Power: Raise base to any power. 求任意幂
  For fractional exponents, or |exponents| > MaxInt, base must be > 0. }
function Power(const Base, Exponent: Extended): Extended;

{ Miscellaneous Routines }
{ 其他子程序 }

{ Frexp:  Separates the mantissa and exponent of X. }
{ Frexp: 分离 X 的尾数和指数 }
procedure Frexp(const X: Extended; var Mantissa: Extended; var Exponent: Integer) register;

{ Ldexp: returns X*2**P }
function Ldexp(const X: Extended; const P: Integer): Extended register;

{ Ceil: Smallest integer >= X, |X| < MaxInt }
{ Ceil: 大于等于 X 的最小整数}
function Ceil(const X: Extended):Integer;

{ Floor: Largest integer <= X,  |X| < MaxInt }
function Floor(const X: Extended): Integer;
{ Floor: 小于等于 X 的最小整数}

{ Poly: Evaluates a uniform polynomial of one variable at value X.
    The coefficients are ordered in increasing powers of X:
    Coefficients[0] + Coefficients[1]*X + ... + Coefficients[N]*(X**N) }
{ 多项式:计算关于 X 的多项式,系数按照 X 的升幂 }
function Poly(const X: Extended; const Coefficients: array of Double): Extended;

{-----------------------------------------------------------------------
Statistical functions.
统计函数( 商业的财务的 )

Common commercial spreadsheet macro names for these statistical and
financial functions are given in the comments preceding each function.
-----------------------------------------------------------------------}

{ Mean:  Arithmetic average of values.  (AVG):  SUM / N }
{ Mean: 一组实数的平均值 }
function Mean(const Data: array of Double): Extended;

{ Sum: Sum of values.  (SUM) }
{ 求和 }
function Sum(const Data: array of Double): Extended register;
function SumInt(const Data: array of Integer): Integer register;
function SumOfSquares(const Data: array of Double): Extended;
procedure SumsAndSquares(const Data: array of Double;
  var Sum, SumOfSquares: Extended) register;

{ MinValue: Returns the smallest signed value in the data array (MIN) }
{ 返回数组中的最小值 }
function MinValue(const Data: array of Double): Double;
function MinIntValue(const Data: array of Integer): Integer;

function Min(const A, B: Integer): Integer; overload;
function Min(const A, B: Int64): Int64; overload;
function Min(const A, B: Single): Single; overload;
function Min(const A, B: Double): Double; overload;
function Min(const A, B: Extended): Extended; overload;

{ MaxValue: Returns the largest signed value in the data array (MAX) }
{ 返回数组中的最大值 }
function MaxValue(const Data: array of Double): Double;
function MaxIntValue(const Data: array of Integer): Integer;

function Max(const A, B: Integer): Integer; overload;
function Max(const A, B: Int64): Int64; overload;
function Max(const A, B: Single): Single; overload;
function Max(const A, B: Double): Double; overload;
function Max(const A, B: Extended): Extended; overload;

{ Standard Deviation (STD): Sqrt(Variance). aka Sample Standard Deviation }
{ 标准差 }
function StdDev(const Data: array of Double): Extended;

{ MeanAndStdDev calculates Mean and StdDev in one call. }
{ 在一个函数中同时计算 平均值和标准差 }
procedure MeanAndStdDev(const Data: array of Double; var Mean, StdDev: Extended);

{ Population Standard Deviation (STDP): Sqrt(PopnVariance).
  Used in some business and financial calculations. }
{ 总体标准差: 用在商业和财务计算上 }
function PopnStdDev(const Data: array of Double): Extended;

{ Variance (VARS): TotalVariance / (N-1). aka Sample Variance }
function Variance(const Data: array of Double): Extended;

{ Population Variance (VAR or VARP): TotalVariance/ N }
{ 总体方差 }
function PopnVariance(const Data: array of Double): Extended;

{ Total Variance: SUM(i=1,N)[(X(i) - Mean)**2] }
function TotalVariance(const Data: array of Double): Extended;

{ Norm:  The Euclidean L2-norm.  Sqrt(SumOfSquares) }
{ 欧几里德 }
function Norm(const Data: array of Double): Extended;

{ MomentSkewKurtosis: Calculates the core factors of statistical analysis:  统计因子
  the first four moments plus the coefficients of skewness and kurtosis.
  M1 is the Mean.  M2 is the Variance.
  Skew reflects symmetry of distribution: M3 / (M2**(3/2))
  Kurtosis reflects flatness of distribution: M4 / Sqr(M2) }
procedure MomentSkewKurtosis(const Data: array of Double;
  var M1, M2, M3, M4, Skew, Kurtosis: Extended);

{ RandG produces random numbers with Gaussian distribution about the mean.
  Useful for simulating data with sampling errors. }
{ 高斯分布随机数: 用于模拟采样 }
function RandG(Mean, StdDev: Extended): Extended;

{-----------------------------------------------------------------------
General/Misc use functions
-----------------------------------------------------------------------}

{ Extreme testing }

// Like a infinity, a NaN double value has an exponent of 7FF, but the NaN
// values have a fraction field that is not 0.
// 像无穷大 a NaN 浮点数有一个 7FF 的幂, 它不是零
function IsNan(const AValue: Double): Boolean;

// Like a NaN, an infinity double value has an exponent of 7FF, but the
// infinity values have a fraction field of 0. Infinity values can be positive
// or negative, which is specified in the high-order, sign bit.
function IsInfinite(const AValue: Double): Boolean;

{ Simple sign testing }
{ 简单符号测试 }

type
  TValueSign = -1..1;

const
  NegativeValue = Low(TValueSign);
  ZeroValue = 0;
  PositiveValue = High(TValueSign);
  // Ordinal type (includes Int64)    The lowest value in the range of the type Low
  // 如果是数组表示数组的索引

function Sign(const AValue: Integer): TValueSign; overload;
function Sign(const AValue: Int64): TValueSign; overload;
function Sign(const AValue: Double): TValueSign; overload;

{ CompareFloat & SameFloat: If epsilon is not given (or is zero) we will
  attempt to compute a reasonable one based on the precision of the floating
  point type used. }
{ 浮点数比较 }

function CompareValue(const A, B: Extended; Epsilon: Extended = 0): TValueRelationship; overload;
function CompareValue(const A, B: Double; Epsilon: Double = 0): TValueRelationship; overload;
function CompareValue(const A, B: Single; Epsilon: Single = 0): TValueRelationship; overload;
function CompareValue(const A, B: Integer): TValueRelationship; overload;
function CompareValue(const A, B: Int64): TValueRelationship; overload;

// 是否相同  Epsilon  设定一个很小的数
function SameValue(const A, B: Extended; Epsilon: Extended = 0): Boolean; overload;
function SameValue(const A, B: Double; Epsilon: Double = 0): Boolean; overload;
function SameValue(const A, B: Single; Epsilon: Single = 0): Boolean; overload;

{ IsZero: These will return true if the given value is zero (or very very very
  close to it). }
{ 判断是否是零 或者是 非常非常非常接近零 }
function IsZero(const A: Extended; Epsilon: Extended = 0): Boolean; overload;
function IsZero(const A: Double; Epsilon: Double = 0): Boolean; overload;
function IsZero(const A: Single; Epsilon: Single = 0): Boolean; overload;

{ Easy to use conditional functions }
{ 条件表达式 }
function IfThen(AValue: Boolean; const ATrue: Integer; const AFalse: Integer = 0): Integer; overload;
function IfThen(AValue: Boolean; const ATrue: Int64; const AFalse: Int64 = 0): Int64; overload;
function IfThen(AValue: Boolean; const ATrue: Double; const AFalse: Double = 0.0): Double; overload;

{ Various random functions }
{ 随机函数 }
function RandomRange(const AFrom, ATo: Integer): Integer;
function RandomFrom(const AValues: array of Integer): Integer; overload;
function RandomFrom(const AValues: array of Int64): Int64; overload;
function RandomFrom(const AValues: array of Double): Double; overload;

{ Range testing functions }
{ 是否包含在某一范围内 }
function InRange(const AValue, AMin, AMax: Integer): Boolean; overload;
function InRange(const AValue, AMin, AMax: Int64): Boolean; overload;
function InRange(const AValue, AMin, AMax: Double): Boolean; overload;

{ Range truncation functions }
{ 限制返回值在某一范围之内 }
function EnsureRange(const AValue, AMin, AMax: Integer): Integer; overload;
function EnsureRange(const AValue, AMin, AMax: Int64): Int64; overload;
function EnsureRange(const AValue, AMin, AMax: Double): Double; overload;

{ 16 bit integer division and remainder in one operation }
{ 在一个操作中求除数和余数 }
procedure DivMod(Dividend: Integer; Divisor: Word;
  var Result, Remainder: Word);

{ Round to a specific digit or power of ten }
{ ADigit has a valid range of 37 to -37.  Here are some valid examples
  of ADigit values...
   3 = 10^3  = 1000   = thousand's place
   2 = 10^2  =  100   = hundred's place
   1 = 10^1  =   10   = ten's place
  -1 = 10^-1 = 1/10   = tenth's place
  -2 = 10^-2 = 1/100  = hundredth's place
  -3 = 10^-3 = 1/1000 = thousandth's place }

type
  TRoundToRange = -37..37;

function RoundTo(const AValue: Double; const ADigit: TRoundToRange): Double;

{ This variation of the RoundTo function follows the asymmetric arithmetic
  rounding algorithm (if Frac(X) < .5 then return X else return X + 1).  This
  function defaults to rounding to the hundredth's place (cents). }

function SimpleRoundTo(const AValue: Double; const ADigit: TRoundToRange = -2): Double;

{-----------------------------------------------------------------------
Financial functions.  Standard set from Quattro Pro.
财务函数

Parameter conventions:

From the point of view of A, amounts received by A are positive and
amounts disbursed by A are negative (e.g. a borrower's loan repayments
are regarded by the borrower as negative).

Interest rates are per payment period.  11% annual percentage rate on a
loan with 12 payments per year would be (11 / 100) / 12 = 0.00916667

-----------------------------------------------------------------------}

type
  // 支付周期
  TPaymentTime = (ptEndOfPeriod, ptStartOfPeriod);

{ Double Declining Balance (DDB) }
{ 双倍倾斜平衡 }
function DoubleDecliningBalance(const Cost, Salvage: Extended;
  Life, Period: Integer): Extended;

{ Future Value (FVAL) }
{ 终值 }
function FutureValue(const Rate: Extended; NPeriods: Integer; const Payment,
  PresentValue: Extended; PaymentTime: TPaymentTime): Extended;

{ Interest Payment (IPAYMT)  }
{ 支付利息 }
function InterestPayment(const Rate: Extended; Period, NPeriods: Integer;
  const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;

{ Interest Rate (IRATE) }
{ 利率 }
function InterestRate(NPeriods: Integer; const Payment, PresentValue,
  FutureValue: Extended; PaymentTime: TPaymentTime): Extended;

{ Internal Rate of Return. (IRR) Needs array of cash flows. }
{ 返回利率 需要现金流转数组 }
function InternalRateOfReturn(const Guess: Extended;
  const CashFlows: array of Double): Extended;

{ Number of Periods (NPER) }
{ 数字周期 }
function NumberOfPeriods(const Rate: Extended; Payment: Extended;
  const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;

{ Net Present Value. (NPV) Needs array of cash flows. }
{ 现在净价值 }
function NetPresentValue(const Rate: Extended; const CashFlows: array of Double;
  PaymentTime: TPaymentTime): Extended;

{ Payment (PAYMT) }
{ 付款 }
function Payment(Rate: Extended; NPeriods: Integer; const PresentValue,
  FutureValue: Extended; PaymentTime: TPaymentTime): Extended;

{ Period Payment (PPAYMT) }
{ 付款周期 }
function PeriodPayment(const Rate: Extended; Period, NPeriods: Integer;
  const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;

{ Present Value (PVAL) }
{ 当前值 }
function PresentValue(const Rate: Extended; NPeriods: Integer;
  const Payment, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;

{ Straight Line depreciation (SLN) }
{ 折旧 }
function SLNDepreciation(const Cost, Salvage: Extended; Life: Integer): Extended;

{ Sum-of-Years-Digits depreciation (SYD) }
{ 年折旧 }
function SYDDepreciation(const Cost, Salvage: Extended; Life, Period: Integer): Extended;

type
  EInvalidArgument = class(EMathError) end;

{-----------------------------------------------------------------------
FPU exception/precision/rounding management

The following functions allow you to control the behavior of the FPU.  With
them you can control what constutes an FPU exception, what the default
precision is used and finally how rounding is handled by the FPU.

FPU 意外/精度/舍入凑整管理
下面的函数允许控制 FPU 的行为
-----------------------------------------------------------------------}

type
  TFPURoundingMode = (rmNearest, rmDown, rmUp, rmTruncate);

{ Return the current rounding mode }
{ 返回当前舍入模式 }
function GetRoundMode: TFPURoundingMode;

{ Set the rounding mode and return the old mode }
{ 设置舍入模式 }
function SetRoundMode(const RoundMode: TFPURoundingMode): TFPURoundingMode;

type
  TFPUPrecisionMode = (pmSingle, pmReserved, pmDouble, pmExtended);

{ Return the current precision control mode }
{ 获取/设置精度控制模式 }
function GetPrecisionMode: TFPUPrecisionMode;

{ Set the precision control mode and return the old one 返回原精度模式 }
function SetPrecisionMode(const Precision: TFPUPrecisionMode): TFPUPrecisionMode;

type
  TFPUException = (exInvalidOp, exDenormalized, exZeroDivide,
                   exOverflow, exUnderflow, exPrecision);
  TFPUExceptionMask = set of TFPUException;

{ Return the exception mask from the control word.
  Any element set in the mask prevents the FPU from raising that kind of
  exception.  Instead, it returns its best attempt at a value, often NaN or an
  infinity. The value depends on the operation and the current rounding mode. }
function GetExceptionMask: TFPUExceptionMask;

{ Set a new exception mask and return the old one }
function SetExceptionMask(const Mask: TFPUExceptionMask): TFPUExceptionMask;

{ Clear any pending exception bits in the status word }
{ 清楚状态字中所有的未决意外位 }
procedure ClearExceptions;

implementation

uses SysConst;

procedure DivMod(Dividend: Integer; Divisor: Word;
  var Result, Remainder: Word);
asm
        PUSH    EBX
        MOV     EBX,EDX // 除数
        MOV     EDX,EAX // 被除数
        SHR     EDX,16  // 被除数右移 16 位
        DIV     BX      // 除
        MOV     EBX,Remainder // 赋结果地址
        MOV     [ECX],AX // 整除值
        MOV     [EBX],DX // 余数
        POP     EBX
end;

function RoundTo(const AValue: Double; const ADigit: TRoundToRange): Double;
var
  LFactor: Double;
begin
  LFactor := IntPower(10, ADigit);
  Result := Round(AValue / LFactor) * LFactor;
end;

function SimpleRoundTo(const AValue: Double; const ADigit: TRoundToRange = -2): Double;
var
  LFactor: Double;
begin
  LFactor := IntPower(10, ADigit);
  Result := Trunc((AValue / LFactor) + 0.5) * LFactor;
end;

function Annuity2(const R: Extended; N: Integer; PaymentTime: TPaymentTime;
  var CompoundRN: Extended): Extended; Forward;
function Compound(const R: Extended; N: Integer): Extended; Forward;
function RelSmall(const X, Y: Extended): Boolean; Forward;

type
  TPoly = record
    Neg, Pos, DNeg, DPos: Extended
  end;

const
  MaxIterations = 15;

procedure ArgError(const Msg: string);
begin
  raise EInvalidArgument.Create(Msg);
end;

function DegToRad(const Degrees: Extended): Extended;  { Radians := Degrees * PI / 180 }
begin
  Result := Degrees * (PI / 180);
end;

function RadToDeg(const Radians: Extended): Extended;  { Degrees := Radians * 180 / PI }
begin
  Result := Radians * (180 / PI);
end;

function GradToRad(const Grads: Extended): Extended;   { Radians := Grads * PI / 200 }
begin
  Result := Grads * (PI / 200);
end;

function RadToGrad(const Radians: Extended): Extended; { Grads := Radians * 200 / PI}
begin
  Result := Radians * (200 / PI);
end;

function CycleToRad(const Cycles: Extended): Extended; { Radians := Cycles * 2PI }
begin
  Result := Cycles * (2 * PI);
end;

function RadToCycle(const Radians: Extended): Extended;{ Cycles := Radians / 2PI }
begin
  Result := Radians / (2 * PI);
end;

function DegToGrad(const Degrees: Extended): Extended;
begin
  Result := RadToGrad(DegToRad(Degrees));
end;

function DegToCycle(const Degrees: Extended): Extended;
begin
  Result := RadToCycle(DegToRad(Degrees));
end;

function GradToDeg(const Grads: Extended): Extended;
begin
  Result := RadToDeg(GradToRad(Grads));
end;

function GradToCycle(const Grads: Extended): Extended;
begin
  Result := RadToCycle(GradToRad(Grads));
end;

function CycleToDeg(const Cycles: Extended): Extended;
begin
  Result := RadToDeg(CycleToRad(Cycles));
end;

function CycleToGrad(const Cycles: Extended): Extended;
begin
  Result := RadToGrad(CycleToRad(Cycles));
end;

function LnXP1(const X: Extended): Extended;
{ Return ln(1 + X).  Accurate for X near 0. }
asm
        FLDLN2 // 将 loge(2) 装入 st(0) st(0) <- loge(2)
        MOV     AX,WORD PTR X+8               { exponent }  // Extended 的最高2个字节
        FLD     X   // X -> st(0) loge(2) ->st(1)
        CMP     AX,$3FFD                      { .4225 }
        JB      @@1
        FLD1        // st(0) <- 1.0  st(1)=x  st(2)= loge(2)
        FADD        // 1.0 + x -> st(0), 编译后被修改为:  FADDP  st(i) <- st(i) + st(0);然后执行一次出栈操作
        FYL2X       // FYL2X  计算Y * log2(X)  st(0)为Y;st(1)为X
        JMP     @@2
@@1:
        FYL2XP1 // Y * log2(X+1)  Y = st(0)  X = st(1)
@@2:
        FWAIT
end;

{ Invariant: Y >= 0 & Result*X**Y = X**I.  Init Y = I and Result = 1. }
{function IntPower(X: Extended; I: Integer): Extended;
var
  Y: Integer;
begin
  Y := Abs(I);
  Result := 1.0;
  while Y > 0 do
  begin
    while not Odd(Y) do
    begin
      Y := Y shr 1;
      X := X * X
    end;
    Dec(Y);
    Result := Result * X
  end;
  if I < 0 then Result := 1.0 / Result
end;
}
function IntPower(const Base: Extended; const Exponent: Integer): Extended;
asm
        mov     ecx, eax   // EAX <-- Exponent
        cdq                // EDX =$00000000
        fld1                      { Result := 1 }
        xor     eax, edx
        sub     eax, edx          { eax := Abs(Exponent) }
        jz      @@3
        fld     Base
        jmp     @@2
@@1:    fmul    ST, ST            { X := Base * Base  st0 * st0 }
@@2:    shr     eax,1             // 连乘
        jnc     @@1               // jnc
        fmul    ST(1),ST          { Result := Result * X }
        jnz     @@1
        fstp    st                { pop X from FPU stack }
        cmp     ecx, 0
        jge     @@3
        fld1
        fdivrp                    { Result := 1 / Result }
@@3:
        fwait
end;

function Compound(const R: Extended; N: Integer): Extended;
{ Return (1 + R)**N. }
begin
  Result := IntPower(1.0 + R, N)
end;

function Annuity2(const R: Extended; N: Integer; PaymentTime: TPaymentTime;
  var CompoundRN: Extended): Extended;
{ Set CompoundRN to Compound(R, N),
  return (1+Rate*PaymentTime)*(Compound(R,N)-1)/R;
}
begin
  if R = 0.0 then
  begin
    CompoundRN := 1.0;
    Result := N;
  end
  else
  begin
    { 6.1E-5 approx= 2**-14 }
    if Abs(R) < 6.1E-5 then
    begin
      CompoundRN := Exp(N * LnXP1(R));
      Result := N*(1+(N-1)*R/2);
    end
    else
    begin
      CompoundRN := Compound(R, N);
      Result := (CompoundRN-1) / R
    end;
    if PaymentTime = ptStartOfPeriod then
      Result := Result * (1 + R);
  end;
end; {Annuity2}

procedure PolyX(const A: array of Double; X: Extended; var Poly: TPoly);
{ Compute A[0] + A[1]*X + ... + A[N]*X**N and X * its derivative.
  Accumulate positive and negative terms separately. }
var
  I: Integer;
  Neg, Pos, DNeg, DPos: Extended;
begin
  Neg := 0.0;
  Pos := 0.0;
  DNeg := 0.0;
  DPos := 0.0;
  for I := High(A) downto Low(A) do
  begin
    DNeg := X * DNeg + Neg;
    Neg := Neg * X;
    DPos := X * DPos + Pos;
    Pos := Pos * X;
    if A[I] >= 0.0 then
      Pos := Pos + A[I]
    else
      Neg := Neg + A[I]
  end;
  Poly.Neg := Neg;
  Poly.Pos := Pos;
  Poly.DNeg := DNeg * X;
  Poly.DPos := DPos * X;
end; {PolyX}

function RelSmall(const X, Y: Extended): Boolean;
{ Returns True if X is small relative to Y }
const
  C1: Double = 1E-15;
  C2: Double = 1E-12;
begin
  Result := Abs(X) < (C1 + C2 * Abs(Y))
end;

{ Math functions. }

function ArcCos(const X: Extended): Extended;
begin
  Result := ArcTan2(Sqrt(1 - X * X), X);
end;

function ArcSin(const X: Extended): Extended;
begin
  Result := ArcTan2(X, Sqrt(1 - X * X))
end;

function ArcTan2(const Y, X: Extended): Extended;
asm
        FLD     Y
        FLD     X
        FPATAN
        FWAIT
end;

function Tan(const X: Extended): Extended;
{  Tan := Sin(X) / Cos(X) }
asm
        FLD    X
        FPTAN
        FSTP   ST(0)      { FPTAN pushes 1.0 after result }
        FWAIT
end;

function CoTan(const X: Extended): Extended;
{ CoTan := Cos(X) / Sin(X) = 1 / Tan(X) }
asm
        FLD   X
        FPTAN
        FDIVRP
        FWAIT
end;

function Secant(const X: Extended): Extended;
{ Secant := 1 / Cos(X) }
asm
        FLD   X
        FCOS
        FLD1
        FDIVRP
        FWAIT
end;

function Cosecant(const X: Extended): Extended;
{ Cosecant := 1 / Sin(X) }
asm
        FLD   X
        FSIN
        FLD1
        FDIVRP
        FWAIT
end;

function Hypot(const X, Y: Extended): Extended;
{ formula: Sqrt(X*X + Y*Y)
  implemented as:  |Y|*Sqrt(1+Sqr(X/Y)), |X| < |Y| for greater precision
var
  Temp: Extended;
begin
  X := Abs(X);
  Y := Abs(Y);
  if X > Y then
  begin
    Temp := X;
    X := Y;
    Y := Temp;
  end;
  if X = 0 then
    Result := Y
  else         // Y > X, X <> 0, so Y > 0
    Result := Y * Sqrt(1 + Sqr(X/Y));
end;
}
asm
        FLD     Y
        FABS
        FLD     X
        FABS
        FCOM
        FNSTSW  AX
        TEST    AH,$45
        JNZ      @@1        // if ST > ST(1) then swap
        FXCH    ST(1)      // put larger number in ST(1)
@@1:    FLDZ
        FCOMP
        FNSTSW  AX
        TEST    AH,$40     // if ST = 0, return ST(1)
        JZ      @@2
        FSTP    ST         // eat ST(0)
        JMP     @@3
@@2:    FDIV    ST,ST(1)   // ST := ST / ST(1)
        FMUL    ST,ST      // ST := ST * ST
        FLD1
        FADD               // ST := ST + 1
        FSQRT              // ST := Sqrt(ST)
        FMUL               // ST(1) := ST * ST(1); Pop ST
@@3:    FWAIT
end;

procedure SinCos(const Theta: Extended; var Sin, Cos: Extended);
asm
        FLD     Theta
        FSINCOS
        FSTP    tbyte ptr [edx]    // Cos
        FSTP    tbyte ptr [eax]    // Sin
        FWAIT
end;

{ Extract exponent and mantissa from X }
procedure Frexp(const X: Extended; var Mantissa: Extended; var Exponent: Integer);
{ Mantissa ptr in EAX, Exponent ptr in EDX }
asm
        FLD     X
        PUSH    EAX
        MOV     dword ptr [edx], 0    { if X = 0, return 0 }

        FTST
        FSTSW   AX
        FWAIT
        SAHF
        JZ      @@Done

        FXTRACT                 // ST(1) = exponent, (pushed) ST = fraction
        FXCH

// The FXTRACT instruction normalizes the fraction 1 bit higher than
// wanted for the definition of frexp() so we need to tweak the result
// by scaling the fraction down and incrementing the exponent.

        FISTP   dword ptr [edx]
        FLD1
        FCHS
        FXCH
        FSCALE                  // scale fraction
        INC     dword ptr [edx] // exponent biased to match
        FSTP ST(1)              // discard -1, leave fraction as TOS

@@Done:
        POP     EAX
        FSTP    tbyte ptr [eax]
        FWAIT
end;

function Ldexp(const X: Extended; const P: Integer): Extended;
  { Result := X * (2^P) }
asm
        PUSH    EAX
        FILD    dword ptr [ESP]
        FLD     X
        FSCALE
        POP     EAX
        FSTP    ST(1)
        FWAIT
end;

function Ceil(const X: Extended): Integer;
begin
  Result := Integer(Trunc(X));
  if Frac(X) > 0 then // 如果小数部分大于零则结果加一, 如果为负数则不加
    Inc(Result);
end;

function Floor(const X: Extended): Integer;
begin
  Result := Integer(Trunc(X));
  if Frac(X) < 0 then
    Dec(Result);
end;

{ Conversion of bases:  Log.b(X) = Log.a(X) / Log.a(b)  }

function Log10(const X: Extended): Extended;
  { Log.10(X) := Log.2(X) * Log.10(2) }
asm
        FLDLG2     { Log base ten of 2 }
        FLD     X
        FYL2X
        FWAIT
end;

function Log2(const X: Extended): Extended;
asm
        FLD1
        FLD     X
        FYL2X
        FWAIT
end;

function LogN(const Base, X: Extended): Extended;
{ Log.N(X) := Log.2(X) / Log.2(N) }
asm
        FLD1
        FLD     X
        FYL2X
        FLD1
        FLD     Base
        FYL2X
        FDIV
        FWAIT
end;

function Poly(const X: Extended; const Coefficients: array of Double): Extended;
{ Horner's method }
var
  I: Integer;
begin
  Result := Coefficients[High(Coefficients)];
  for I := High(Coefficients)-1 downto Low(Coefficients) do
    Result := Result * X + Coefficients[I];
end;

function Power(const Base, Exponent: Extended): Extended;
begin
  if Exponent = 0.0 then
    Result := 1.0               { n**0 = 1 }
  else if (Base = 0.0) and (Exponent > 0.0) then
    Result := 0.0               { 0**n = 0, n > 0 }
  else if (Frac(Exponent) = 0.0) and (Abs(Exponent) <= MaxInt) then
    Result := IntPower(Base, Integer(Trunc(Exponent)))
  else
    Result := Exp(Exponent * Ln(Base))
end;

{ Hyperbolic functions }

function CoshSinh(const X: Extended; const Factor: Double): Extended;
begin
  Result := Exp(X) / 2;
  Result := Result + Factor / Result;
end;

function Cosh(const X: Extended): Extended;
begin
  Result := CoshSinh(X, 0.25)
end;

function Sinh(const X: Extended): Extended;
begin
  Result := CoshSinh(X, -0.25)
end;

const
  MaxTanhDomain = 5678.22249441322; // Ln(MaxExtended)/2

function Tanh(const X: Extended): Extended;
begin
  if X > MaxTanhDomain then
    Result := 1.0
  else if X < -MaxTanhDomain then
    Result := -1.0
  else
  begin
    Result := Exp(X);
    Result := Result * Result;
    Result := (Result - 1.0) / (Result + 1.0)
  end;
end;

function ArcCosh(const X: Extended): Extended;
begin
  if X <= 1.0 then
    Result := 0.0
  else if X > 1.0e10 then
    Result := Ln(2) + Ln(X)
  else
    Result := Ln(X + Sqrt((X - 1.0) * (X + 1.0)));
end;

function ArcSinh(const X: Extended): Extended;
var
  Neg: Boolean;
  LX: Extended;
begin
  if X = 0 then
    Result := 0
  else
  begin
    Neg := (X < 0);
    LX := Abs(X);
    if LX > 1.0e10 then
      Result := Ln(2) + Ln(LX)
    else
    begin
      Result := LX * LX;
      Result := LnXP1(LX + Result / (1 + Sqrt(1 + Result)));
    end;
    if Neg then
      Result := -Result;
  end;
end;

function ArcTanh(const X: Extended): Extended;
var
  Neg: Boolean;
  LX: Extended;
begin
  if X = 0 then
    Result := 0
  else
  begin
    Neg := (X < 0);
    LX := Abs(X);
    if LX >= 1 then
      Result := MaxExtended
    else
      Result := 0.5 * LnXP1((2.0 * LX) / (1.0 - LX));
    if Neg then
      Result := -Result;
  end;
end;

function Cot(const X: Extended): Extended;
begin
  Result := CoTan(X);
end;

function Sec(const X: Extended): Extended;
begin
  Result := Secant(X);
end;

function Csc(const X: Extended): Extended;
begin
  Result := Cosecant(X);
end;

function CotH(const X: Extended): Extended;
begin
  Result := 1 / TanH(X);
end;

function SecH(const X: Extended): Extended;
begin
  Result := 1 / CosH(X);
end;

function CscH(const X: Extended): Extended;
begin
  Result := 1 / SinH(X);
end;

function ArcCot(const X: Extended): Extended;
begin
  Result := Tan(1 / X);
end;

function ArcSec(const X: Extended): Extended;
begin
  Result := Cos(1 / X);
end;

function ArcCsc(const X: Extended): Extended;
begin
  Result := Sin(1 / X);
end;

function ArcCotH(const X: Extended): Extended;
begin
  Result := 1 / ArcCot(X);
end;

function ArcSecH(const X: Extended): Extended;
begin
  Result := 1 / ArcSec(X);
end;

function ArcCscH(const X: Extended): Extended;
begin
  Result := 1 / ArcCsc(X);
end;

function IsNan(const AValue: Double): Boolean;
begin
  Result := ((PInt64(@AValue)^ and $7FF0000000000000)  = $7FF0000000000000) and
            ((PInt64(@AValue)^ and $000FFFFFFFFFFFFF) <> $0000000000000000)
end;

function IsInfinite(const AValue: Double): Boolean;
begin
  Result := ((PInt64(@AValue)^ and $7FF0000000000000) = $7FF0000000000000) and
            ((PInt64(@AValue)^ and $000FFFFFFFFFFFFF) = $0000000000000000)
end;

{ Statistical functions }

function Mean(const Data: array of Double): Extended;
begin
  Result := SUM(Data) / (High(Data) - Low(Data) + 1)
end;

function MinValue(const Data: array of Double): Double;
var
  I: Integer;
begin
  Result := Data[Low(Data)];
  for I := Low(Data) + 1 to High(Data) do
    if Result > Data[I] then
      Result := Data[I];
end;

function MinIntValue(const Data: array of Integer): Integer;
var
  I: Integer;
begin
  Result := Data[Low(Data)];
  for I := Low(Data) + 1 to High(Data) do
    if Result > Data[I] then
      Result := Data[I];
end;

function Min(const A, B: Integer): Integer;
begin
  if A < B then
    Result := A
  else
    Result := B;
end;

function Min(const A, B: Int64): Int64;
begin
  if A < B then
    Result := A
  else
    Result := B;
end;

function Min(const A, B: Single): Single;
begin
  if A < B then
    Result := A
  else
    Result := B;
end;

function Min(const A, B: Double): Double;
begin
  if A < B then
    Result := A
  else
    Result := B;
end;

function Min(const A, B: Extended): Extended;
begin
  if A < B then
    Result := A
  else
    Result := B;
end;

function MaxValue(const Data: array of Double): Double;
var
  I: Integer;
begin
  Result := Data[Low(Data)];
  for I := Low(Data) + 1 to High(Data) do
    if Result < Data[I] then
      Result := Data[I];
end;

function MaxIntValue(const Data: array of Integer): Integer;
var
  I: Integer;
begin
  Result := Data[Low(Data)];
  for I := Low(Data) + 1 to High(Data) do
    if Result < Data[I] then
      Result := Data[I];
end;

function Max(const A, B: Integer): Integer;
begin
  if A > B then
    Result := A
  else
    Result := B;
end;

function Max(const A, B: Int64): Int64;
begin
  if A > B then
    Result := A
  else
    Result := B;
end;

function Max(const A, B: Single): Single;
begin
  if A > B then
    Result := A
  else
    Result := B;
end;

function Max(const A, B: Double): Double;
begin
  if A > B then
    Result := A
  else
    Result := B;
end;

function Max(const A, B: Extended): Extended;
begin
  if A > B then
    Result := A
  else
    Result := B;
end;

function Sign(const AValue: Integer): TValueSign;
begin
  Result := ZeroValue;
  if AValue < 0 then
    Result := NegativeValue
  else if AValue > 0 then
    Result := PositiveValue;
end;

function Sign(const AValue: Int64): TValueSign;
begin
  Result := ZeroValue;
  if AValue < 0 then
    Result := NegativeValue
  else if AValue > 0 then
    Result := PositiveValue;
end;

function Sign(const AValue: Double): TValueSign;
begin
  if ((PInt64(@AValue)^ and $7FFFFFFFFFFFFFFF) = $0000000000000000) then
    Result := ZeroValue
  else if ((PInt64(@AValue)^ and $8000000000000000) = $8000000000000000) then
    Result := NegativeValue
  else
    Result := PositiveValue;
end;

const
  FuzzFactor = 1000;
  ExtendedResolution = 1E-19 * FuzzFactor;
  DoubleResolution   = 1E-15 * FuzzFactor;
  SingleResolution   = 1E-7 * FuzzFactor;

function CompareValue(const A, B: Extended; Epsilon: Extended): TValueRelationship;
begin
  if SameValue(A, B, Epsilon) then
    Result := EqualsValue
  else if A < B then
    Result := LessThanValue
  else
    Result := GreaterThanValue;
end;

function CompareValue(const A, B: Double; Epsilon: Double): TValueRelationship;
begin
  if SameValue(A, B, Epsilon) then
    Result := EqualsValue
  else if A < B then
    Result := LessThanValue
  else
    Result := GreaterThanValue;
end;

function CompareValue(const A, B: Single; Epsilon: Single): TValueRelationship;
begin
  if SameValue(A, B, Epsilon) then
    Result := EqualsValue
  else if A < B then
    Result := LessThanValue
  else
    Result := GreaterThanValue;
end;

function CompareValue(const A, B: Integer): TValueRelationship;
begin
  if A = B then
    Result := EqualsValue
  else if A < B then
    Result := LessThanValue
  else
    Result := GreaterThanValue;
end;

function CompareValue(const A, B: Int64): TValueRelationship;
begin
  if A = B then
    Result := EqualsValue
  else if A < B then
    Result := LessThanValue
  else
    Result := GreaterThanValue;
end;

function SameValue(const A, B: Extended; Epsilon: Extended): Boolean;
begin
  if Epsilon = 0 then
    Epsilon := Min(Abs(A), Abs(B)) * ExtendedResolution;
  Result := Abs(A - B) <= Epsilon;
end;

function SameValue(const A, B: Double; Epsilon: Double): Boolean;
begin
  if Epsilon = 0 then
    Epsilon := Min(Abs(A), Abs(B)) * DoubleResolution;
  Result := Abs(A - B) <= Epsilon;
end;

function SameValue(const A, B: Single; Epsilon: Single): Boolean;
begin
  if Epsilon = 0 then
    Epsilon := Min(Abs(A), Abs(B)) * SingleResolution;
  Result := Abs(A - B) <= Epsilon;
end;

function IsZero(const A: Extended; Epsilon: Extended): Boolean;
begin
  if Epsilon = 0 then
    Epsilon := ExtendedResolution;
  Result := Abs(A) <= Epsilon;
end;

function IsZero(const A: Double; Epsilon: Double): Boolean;
begin
  if Epsilon = 0 then
    Epsilon := DoubleResolution;
  Result := Abs(A) <= Epsilon;
end;

function IsZero(const A: Single; Epsilon: Single): Boolean;
begin
  if Epsilon = 0 then
    Epsilon := SingleResolution;
  Result := Abs(A) <= Epsilon;
end;

function IfThen(AValue: Boolean; const ATrue: Integer; const AFalse: Integer): Integer;
begin
  if AValue then
    Result := ATrue
  else
    Result := AFalse;
end;

function IfThen(AValue: Boolean; const ATrue: Int64; const AFalse: Int64): Int64;
begin
  if AValue then
    Result := ATrue
  else
    Result := AFalse;
end;

function IfThen(AValue: Boolean; const ATrue: Double; const AFalse: Double): Double;
begin
  if AValue then
    Result := ATrue
  else
    Result := AFalse;
end;

function RandomRange(const AFrom, ATo: Integer): Integer;
begin
  if AFrom > ATo then
    Result := Random(AFrom - ATo) + ATo
  else
    Result := Random(ATo - AFrom) + AFrom;
end;

function RandomFrom(const AValues: array of Integer): Integer;
begin
  Result := AValues[Random(High(AValues) + 1)];
end;

function RandomFrom(const AValues: array of Int64): Int64;
begin
  Result := AValues[Random(High(AValues) + 1)];
end;

function RandomFrom(const AValues: array of Double): Double;
begin
  Result := AValues[Random(High(AValues) + 1)];
end;

{ Range testing functions }

function InRange(const AValue, AMin, AMax: Integer): Boolean;
begin
  Result := (AValue >= AMin) and (AValue <= AMax);
end;

function InRange(const AValue, AMin, AMax: Int64): Boolean;
begin
  Result := (AValue >= AMin) and (AValue <= AMax);
end;

function InRange(const AValue, AMin, AMax: Double): Boolean;
begin
  Result := (AValue >= AMin) and (AValue <= AMax);
end;

{ Range truncation functions }

function EnsureRange(const AValue, AMin, AMax: Integer): Integer;
begin
  Result := AValue;
  assert(AMin <= AMax);
  if Result < AMin then
    Result := AMin;
  if Result > AMax then
    Result := AMax;
end;

function EnsureRange(const AValue, AMin, AMax: Int64): Int64;
begin
  Result := AValue;
  assert(AMin <= AMax);
  if Result < AMin then
    Result := AMin;
  if Result > AMax then
    Result := AMax;
end;

function EnsureRange(const AValue, AMin, AMax: Double): Double;
begin
  Result := AValue;
  assert(AMin <= AMax);
  if Result < AMin then
    Result := AMin;
  if Result > AMax then
    Result := AMax;
end;

procedure MeanAndStdDev(const Data: array of Double; var Mean, StdDev: Extended);
var
  S: Extended;
  N,I: Integer;
begin
  N := High(Data)- Low(Data) + 1;
  if N = 1 then
  begin
    Mean := Data[0];
    StdDev := Data[0];
    Exit;
  end;
  Mean := Sum(Data) / N;
  S := 0;               // sum differences from the mean, for greater accuracy
  for I := Low(Data) to High(Data) do
    S := S + Sqr(Mean - Data[I]);
  StdDev := Sqrt(S / (N - 1));
end;

procedure MomentSkewKurtosis(const Data: array of Double;
  var M1, M2, M3, M4, Skew, Kurtosis: Extended);
var
  Sum, SumSquares, SumCubes, SumQuads, OverN, Accum, M1Sqr, S2N, S3N: Extended;
  I: Integer;
begin
  OverN := 1 / (High(Data) - Low(Data) + 1);
  Sum := 0;
  SumSquares := 0;
  SumCubes := 0;
  SumQuads := 0;
  for I := Low(Data) to High(Data) do
  begin
    Sum := Sum + Data[I];
    Accum := Sqr(Data[I]);
    SumSquares := SumSquares + Accum;
    Accum := Accum*Data[I];
    SumCubes := SumCubes + Accum;
    SumQuads := SumQuads + Accum*Data[I];
  end;
  M1 := Sum * OverN;
  M1Sqr := Sqr(M1);
  S2N := SumSquares * OverN;
  S3N := SumCubes * OverN;
  M2 := S2N - M1Sqr;
  M3 := S3N - (M1 * 3 * S2N) + 2*M1Sqr*M1;
  M4 := (SumQuads * OverN) - (M1 * 4 * S3N) + (M1Sqr*6*S2N - 3*Sqr(M1Sqr));
  Skew := M3 * Power(M2, -3/2);   // = M3 / Power(M2, 3/2)
  Kurtosis := M4 / Sqr(M2);
end;

function Norm(const Data: array of Double): Extended;
begin
  Result := Sqrt(SumOfSquares(Data));
end;

function PopnStdDev(const Data: array of Double): Extended;
begin
  Result := Sqrt(PopnVariance(Data))
end;

function PopnVariance(const Data: array of Double): Extended;
begin
  Result := TotalVariance(Data) / (High(Data) - Low(Data) + 1)
end;

function RandG(Mean, StdDev: Extended): Extended;
{ Marsaglia-Bray algorithm }
var
  U1, S2: Extended;
begin
  repeat
    U1 := 2*Random - 1;
    S2 := Sqr(U1) + Sqr(2*Random-1);
  until S2 < 1;
  Result := Sqrt(-2*Ln(S2)/S2) * U1 * StdDev + Mean;
end;

function StdDev(const Data: array of Double): Extended;
begin
  Result := Sqrt(Variance(Data))
end;

procedure RaiseOverflowError; forward;

function SumInt(const Data: array of Integer): Integer;

asm  // IN: EAX = ptr to Data, EDX = High(Data) = Count - 1
     // loop unrolled 4 times, 5 clocks per loop, 1.2 clocks per datum
      PUSH EBX
      MOV  ECX, EAX         // ecx = ptr to data
      MOV  EBX, EDX
      XOR  EAX, EAX
      AND  EDX, not 3 // not 3
      AND  EBX, 3
      SHL  EDX, 2
      JMP  @Vector.Pointer[EBX*4]
@Vector:
      DD @@1
      DD @@2
      DD @@3
      DD @@4
@@4:
      ADD  EAX, [ECX+12+EDX]
      JO   RaiseOverflowError
@@3:
      ADD  EAX, [ECX+8+EDX]
      JO   RaiseOverflowError
@@2:
      ADD  EAX, [ECX+4+EDX]
      JO   RaiseOverflowError
@@1:
      ADD  EAX, [ECX+EDX]
      JO   RaiseOverflowError
      SUB  EDX,16
      JNS  @@4
      POP  EBX
end;

procedure RaiseOverflowError;
begin
  raise EIntOverflow.Create(SIntOverflow);
end;

function SUM(const Data: array of Double): Extended;

asm  // IN: EAX = ptr to Data, EDX = High(Data) = Count - 1
     // Uses 4 accumulators to minimize read-after-write delays and loop overhead
     // 5 clocks per loop, 4 items per loop = 1.2 clocks per item
       FLDZ
       MOV      ECX, EDX
       FLD      ST(0)
       AND      EDX, not 3
       FLD      ST(0)
       AND      ECX, 3
       FLD      ST(0)
       SHL      EDX, 3      // count * sizeof(Double) = count * 8
       JMP      @Vector.Pointer[ECX*4]
@Vector:
       DD @@1
       DD @@2
       DD @@3
       DD @@4
@@4:   FADD     qword ptr [EAX+EDX+24]    // 1
       FXCH     ST(3)                     // 0
@@3:   FADD     qword ptr [EAX+EDX+16]    // 1
       FXCH     ST(2)                     // 0
@@2:   FADD     qword ptr [EAX+EDX+8]     // 1
       FXCH     ST(1)                     // 0
@@1:   FADD     qword ptr [EAX+EDX]       // 1
       FXCH     ST(2)                     // 0
       SUB      EDX, 32
       JNS      @@4
       FADDP    ST(3),ST                  // ST(3) := ST + ST(3); Pop ST
       FADD                               // ST(1) := ST + ST(1); Pop ST
       FADD                               // ST(1) := ST + ST(1); Pop ST
       FWAIT
end;

function SumOfSquares(const Data: array of Double): Extended;
var
  I: Integer;
begin
  Result := 0.0;
  for I := Low(Data) to High(Data) do
    Result := Result + Sqr(Data[I]);
end;

procedure SumsAndSquares(const Data: array of Double; var Sum, SumOfSquares: Extended);

asm  // IN:  EAX = ptr to Data
     //      EDX = High(Data) = Count - 1
     //      ECX = ptr to Sum
     // Est. 17 clocks per loop, 4 items per loop = 4.5 clocks per data item
       FLDZ                 // init Sum accumulator
       PUSH     ECX
       MOV      ECX, EDX
       FLD      ST(0)       // init Sqr1 accum.
       AND      EDX, not 3
       FLD      ST(0)       // init Sqr2 accum.
       AND      ECX, 3
       FLD      ST(0)       // init/simulate last data item left in ST
       SHL      EDX, 3      // count * sizeof(Double) = count * 8
       JMP      @Vector.Pointer[ECX*4]
@Vector:
       DD @@1
       DD @@2
       DD @@3
       DD @@4
@@4:   FADD                            // Sqr2 := Sqr2 + Sqr(Data4); Pop Data4
       FLD     qword ptr [EAX+EDX+24]  // Load Data1
       FADD    ST(3),ST                // Sum := Sum + Data1
       FMUL    ST,ST                   // Data1 := Sqr(Data1)
@@3:   FLD     qword ptr [EAX+EDX+16]  // Load Data2
       FADD    ST(4),ST                // Sum := Sum + Data2
       FMUL    ST,ST                   // Data2 := Sqr(Data2)
       FXCH                            // Move Sqr(Data1) into ST(0)
       FADDP   ST(3),ST                // Sqr1 := Sqr1 + Sqr(Data1); Pop Data1
@@2:   FLD     qword ptr [EAX+EDX+8]   // Load Data3
       FADD    ST(4),ST                // Sum := Sum + Data3
       FMUL    ST,ST                   // Data3 := Sqr(Data3)
       FXCH                            // Move Sqr(Data2) into ST(0)
       FADDP   ST(3),ST                // Sqr1 := Sqr1 + Sqr(Data2); Pop Data2
@@1:   FLD     qword ptr [EAX+EDX]     // Load Data4
       FADD    ST(4),ST                // Sum := Sum + Data4
       FMUL    ST,ST                   // Sqr(Data4)
       FXCH                            // Move Sqr(Data3) into ST(0)
       FADDP   ST(3),ST                // Sqr1 := Sqr1 + Sqr(Data3); Pop Data3
       SUB     EDX,32
       JNS     @@4
       FADD                         // Sqr2 := Sqr2 + Sqr(Data4); Pop Data4
       POP     ECX
       FADD                         // Sqr1 := Sqr2 + Sqr1; Pop Sqr2
       FXCH                         // Move Sum1 into ST(0)
       MOV     EAX, SumOfSquares
       FSTP    tbyte ptr [ECX]      // Sum := Sum1; Pop Sum1
       FSTP    tbyte ptr [EAX]      // SumOfSquares := Sum1; Pop Sum1
       FWAIT
end;

function TotalVariance(const Data: array of Double): Extended;
var
  Sum, SumSquares: Extended;
begin
  SumsAndSquares(Data, Sum, SumSquares);
  Result := SumSquares - Sqr(Sum)/(High(Data) - Low(Data) + 1);
end;

function Variance(const Data: array of Double): Extended;
begin
  Result := TotalVariance(Data) / (High(Data) - Low(Data))
end;

{ Depreciation functions. }

function DoubleDecliningBalance(const Cost, Salvage: Extended; Life, Period: Integer): Extended;
{ dv := cost * (1 - 2/life)**(period - 1)
  DDB = (2/life) * dv
  if DDB > dv - salvage then DDB := dv - salvage
  if DDB < 0 then DDB := 0
}
var
  DepreciatedVal, Factor: Extended;
begin
  Result := 0;
  if (Period < 1) or (Life < Period) or (Life < 1) or (Cost <= Salvage) then
    Exit;

  {depreciate everything in period 1 if life is only one or two periods}
  if ( Life <= 2 ) then
  begin
    if ( Period = 1 ) then
      DoubleDecliningBalance:=Cost-Salvage
    else
      DoubleDecliningBalance:=0; {all depreciation occurred in first period}
    exit;
  end;
  Factor := 2.0 / Life;

  DepreciatedVal := Cost * IntPower((1.0 - Factor), Period - 1);
  {DepreciatedVal is Cost-(sum of previous depreciation results)}

  Result := Factor * DepreciatedVal;
  {Nominal computed depreciation for this period.  The rest of the
   function applies limits to this nominal value. }

  {Only depreciate until total depreciation equals cost-salvage.}
  if Result > DepreciatedVal - Salvage then
    Result := DepreciatedVal - Salvage;

  {No more depreciation after salvage value is reached.  This is mostly a nit.
   If Result is negative at this point, it's very close to zero.}
  if Result < 0.0 then
    Result := 0.0;
end;

function SLNDepreciation(const Cost, Salvage: Extended; Life: Integer): Extended;
{ Spreads depreciation linearly over life. }
begin
  if Life < 1 then ArgError('SLNDepreciation');
  Result := (Cost - Salvage) / Life
end;

function SYDDepreciation(const Cost, Salvage: Extended; Life, Period: Integer): Extended;
{ SYD = (cost - salvage) * (life - period + 1) / (life*(life + 1)/2) }
{ Note: life*(life+1)/2 = 1+2+3+...+life "sum of years"
        The depreciation factor varies from life/sum_of_years in first period = 1
                                       downto  1/sum_of_years in last period = life.
        Total depreciation over life is cost-salvage.}
var
  X1, X2: Extended;
begin
  Result := 0;
  if (Period < 1) or (Life < Period) or (Cost <= Salvage) then Exit;
  X1 := 2 * (Life - Period + 1);
  X2 := Life * (Life + 1);
  Result := (Cost - Salvage) * X1 / X2
end;

{ Discounted cash flow functions. }
{ 按现值计算的现金流量 }

function InternalRateOfReturn(const Guess: Extended; const CashFlows: array of Double): Extended;
{
Use Newton's method to solve NPV = 0, where NPV is a polynomial in
x = 1/(1+rate).  Split the coefficients into negative and postive sets:
  neg + pos = 0, so pos = -neg, so  -neg/pos = 1
Then solve:
  log(-neg/pos) = 0

  Let  t = log(1/(1+r) = -LnXP1(r)
  then r = exp(-t) - 1
Iterate on t, then use the last equation to compute r.
}
var
  T, Y: Extended;
  Poly: TPoly;
  K, Count: Integer;

  function ConditionP(const CashFlows: array of Double): Integer;
  { Guarantees existence and uniqueness of root.  The sign of payments
    must change exactly once, the net payout must be always > 0 for
    first portion, then each payment must be >= 0.
    Returns: 0 if condition not satisfied, > 0 if condition satisfied
    and this is the index of the first value considered a payback. }
  var
    X: Double;
    I, K: Integer;
  begin
    K := High(CashFlows);
    while (K >= 0) and (CashFlows[K] >= 0.0) do Dec(K);
    Inc(K);
    if K > 0 then
    begin
      X := 0.0;
      I := 0;
      while I < K do
      begin
        X := X + CashFlows[I];
        if X >= 0.0 then
        begin
          K := 0;
          Break;
        end;
        Inc(I)
      end
    end;
    ConditionP := K
  end;

begin
  InternalRateOfReturn := 0;
  K := ConditionP(CashFlows);
  if K < 0 then ArgError('InternalRateOfReturn');
  if K = 0 then
  begin
    if Guess <= -1.0 then ArgError('InternalRateOfReturn');
    T := -LnXP1(Guess)
  end else
    T := 0.0;
  for Count := 1 to MaxIterations do
  begin
    PolyX(CashFlows, Exp(T), Poly);
    if Poly.Pos <= Poly.Neg then ArgError('InternalRateOfReturn');
    if (Poly.Neg >= 0.0) or (Poly.Pos <= 0.0) then
    begin
      InternalRateOfReturn := -1.0;
      Exit;
    end;
    with Poly do
      Y := Ln(-Neg / Pos) / (DNeg / Neg - DPos / Pos);
    T := T - Y;
    if RelSmall(Y, T) then
    begin
      InternalRateOfReturn := Exp(-T) - 1.0;
      Exit;
    end
  end;
  ArgError('InternalRateOfReturn');
end;

function NetPresentValue(const Rate: Extended; const CashFlows: array of Double;
  PaymentTime: TPaymentTime): Extended;
{ Caution: The sign of NPV is reversed from what would be expected for standard
   cash flows!}
var
  rr: Extended;
  I: Integer;
begin
  if Rate <= -1.0 then ArgError('NetPresentValue');
  rr := 1/(1+Rate);
  result := 0;
  for I := High(CashFlows) downto Low(CashFlows) do
    result := rr * result + CashFlows[I];
  if PaymentTime = ptEndOfPeriod then result := rr * result;
end;

{ Annuity functions. }
{ 养老金函数 }

{---------------
From the point of view of A, amounts received by A are positive and
amounts disbursed by A are negative (e.g. a borrower's loan repayments
are regarded by the borrower as negative).

Given interest rate r, number of periods n:
  compound(r, n) = (1 + r)**n               "Compounding growth factor"
  annuity(r, n) = (compound(r, n)-1) / r   "Annuity growth factor"

Given future value fv, periodic payment pmt, present value pv and type
of payment (start, 1 , or end of period, 0) pmtTime, financial variables satisfy:

  fv = -pmt*(1 + r*pmtTime)*annuity(r, n) - pv*compound(r, n)

For fv, pv, pmt:

  C := compound(r, n)
  A := (1 + r*pmtTime)*annuity(r, n)
  Compute both at once in Annuity2.

  if C > 1E16 then A = C/r, so:
    fv := meaningless
    pv := -pmt*(pmtTime+1/r)
    pmt := -pv*r/(1 + r*pmtTime)
  else
    fv := -pmt(1+r*pmtTime)*A - pv*C
    pv := (-pmt(1+r*pmtTime)*A - fv)/C
    pmt := (-pv*C-fv)/((1+r*pmtTime)*A)
---------------}

function PaymentParts(Period, NPeriods: Integer; Rate, PresentValue,
  FutureValue: Extended; PaymentTime: TPaymentTime; var IntPmt: Extended):
  Extended;
var
  Crn:extended; { =Compound(Rate,NPeriods) }
  Crp:extended; { =Compound(Rate,Period-1) }
  Arn:extended; { =Annuity2(...) }

begin
  if Rate <= -1.0 then ArgError('PaymentParts');
  Crp:=Compound(Rate,Period-1);
  Arn:=Annuity2(Rate,NPeriods,PaymentTime,Crn);
  IntPmt:=(FutureValue*(Crp-1)-PresentValue*(Crn-Crp))/Arn;
  PaymentParts:=(-FutureValue-PresentValue)*Crp/Arn;
end;

function FutureValue(const Rate: Extended; NPeriods: Integer; const Payment,
  PresentValue: Extended; PaymentTime: TPaymentTime): Extended;
var
  Annuity, CompoundRN: Extended;
begin
  if Rate <= -1.0 then ArgError('FutureValue');
  Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN);
  if CompoundRN > 1.0E16 then ArgError('FutureValue');
  FutureValue := -Payment * Annuity - PresentValue * CompoundRN
end;

function InterestPayment(const Rate: Extended; Period, NPeriods: Integer;
  const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
var
  Crp:extended; { compound(rate,period-1)}
  Crn:extended; { compound(rate,nperiods)}
  Arn:extended; { annuityf(rate,nperiods)}
begin
  if (Rate <= -1.0)
    or (Period < 1) or (Period > NPeriods) then ArgError('InterestPayment');
  Crp:=Compound(Rate,Period-1);
  Arn:=Annuity2(Rate,Nperiods,PaymentTime,Crn);
  InterestPayment:=(FutureValue*(Crp-1)-PresentValue*(Crn-Crp))/Arn;
end;

function InterestRate(NPeriods: Integer; const Payment, PresentValue,
  FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
{
Given:
  First and last payments are non-zero and of opposite signs.
  Number of periods N >= 2.
Convert data into cash flow of first, N-1 payments, last with
first < 0, payment > 0, last > 0.
Compute the IRR of this cash flow:
  0 = first + pmt*x + pmt*x**2 + ... + pmt*x**(N-1) + last*x**N
where x = 1/(1 + rate).
Substitute x = exp(t) and apply Newton's method to
  f(t) = log(pmt*x + ... + last*x**N) / -first
which has a unique root given the above hypotheses.
}
var
  X, Y, Z, First, Pmt, Last, T, ET, EnT, ET1: Extended;
  Count: Integer;
  Reverse: Boolean;

  function LostPrecision(X: Extended): Boolean;
  asm
        XOR     EAX, EAX
        MOV     BX,WORD PTR X+8
        INC     EAX
        AND     EBX, $7FF0
        JZ      @@1
        CMP     EBX, $7FF0
        JE      @@1
        XOR     EAX,EAX
  @@1:
  end;

begin
  Result := 0;
  if NPeriods <= 0 then ArgError('InterestRate');
  Pmt := Payment;
  if PaymentTime = ptEndOfPeriod then
  begin
    X := PresentValue;
    Y := FutureValue + Payment
  end
  else
  begin
    X := PresentValue + Payment;
    Y := FutureValue
  end;
  First := X;
  Last := Y;
  Reverse := False;
  if First * Payment > 0.0 then
  begin
    Reverse := True;
    T := First;
    First := Last;
    Last := T
  end;
  if first > 0.0 then
  begin
    First := -First;
    Pmt := -Pmt;
    Last := -Last
  end;
  if (First = 0.0) or (Last < 0.0) then ArgError('InterestRate');
  T := 0.0;                     { Guess at solution }
  for Count := 1 to MaxIterations do
  begin
    EnT := Exp(NPeriods * T);
    if {LostPrecision(EnT)} ent=(ent+1) then
    begin
      Result := -Pmt / First;
      if Reverse then
        Result := Exp(-LnXP1(Result)) - 1.0;
      Exit;
    end;
    ET := Exp(T);
    ET1 := ET - 1.0;
    if ET1 = 0.0 then
    begin
      X := NPeriods;
      Y := X * (X - 1.0) / 2.0
    end
    else
    begin
      X := ET * (Exp((NPeriods - 1) * T)-1.0) / ET1;
      Y := (NPeriods * EnT - ET - X * ET) / ET1
    end;
    Z := Pmt * X + Last * EnT;
    Y := Ln(Z / -First) / ((Pmt * Y + Last * NPeriods *EnT) / Z);
    T := T - Y;
    if RelSmall(Y, T) then
    begin
      if not Reverse then T := -T;
      InterestRate := Exp(T)-1.0;
      Exit;
    end
  end;
  ArgError('InterestRate');
end;

function NumberOfPeriods(const Rate: Extended; Payment: Extended;
  const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;

{ If Rate = 0 then nper := -(pv + fv) / pmt
  else cf := pv + pmt * (1 + rate*pmtTime) / rate
       nper := LnXP1(-(pv + fv) / cf) / LnXP1(rate) }

var
  PVRPP: Extended; { =PV*Rate+Payment } {"initial cash flow"}
  T:     Extended;

begin

  if Rate <= -1.0 then ArgError('NumberOfPeriods');

{whenever both Payment and PaymentTime are given together, the PaymentTime has the effect
of modifying the effective Payment by the interest accrued on the Payment}

  if ( PaymentTime=ptStartOfPeriod ) then
    Payment:=Payment*(1+Rate);

{if the payment exactly matches the interest accrued periodically on the
presentvalue, then an infinite number of payments are going to be
required to effect a change from presentvalue to futurevalue.  The
following catches that specific error where payment is exactly equal,
but opposite in sign to the interest on the present value.  If PVRPP
("initial cash flow") is simply close to zero, the computation will
be numerically unstable, but not as likely to cause an error.}

  PVRPP:=PresentValue*Rate+Payment;
  if PVRPP=0 then ArgError('NumberOfPeriods');

  { 6.1E-5 approx= 2**-14 }
  if ( ABS(Rate)<6.1E-5 ) then
    Result:=-(PresentValue+FutureValue)/PVRPP
  else
  begin

{starting with the initial cash flow, each compounding period cash flow
should result in the current value approaching the final value.  The
following test combines a number of simultaneous conditions to ensure
reasonableness of the cashflow before computing the NPER.}

    T:= -(PresentValue+FutureValue)*Rate/PVRPP;
    if  T<=-1.0  then ArgError('NumberOfPeriods');
    Result := LnXP1(T) / LnXP1(Rate)
  end;
  NumberOfPeriods:=Result;
end;

function Payment(Rate: Extended; NPeriods: Integer; const PresentValue,
  FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
var
  Annuity, CompoundRN: Extended;
begin
  if Rate <= -1.0 then ArgError('Payment');
  Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN);
  if CompoundRN > 1.0E16 then
    Payment := -PresentValue * Rate / (1 + Integer(PaymentTime) * Rate)
  else
    Payment := (-PresentValue * CompoundRN - FutureValue) / Annuity
end;

function PeriodPayment(const Rate: Extended; Period, NPeriods: Integer;
  const PresentValue, FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
var
  Junk: Extended;
begin
  if (Rate <= -1.0) or (Period < 1) or (Period > NPeriods) then ArgError('PeriodPayment');
  PeriodPayment := PaymentParts(Period, NPeriods, Rate, PresentValue,
       FutureValue, PaymentTime, Junk);
end;

function PresentValue(const Rate: Extended; NPeriods: Integer; const Payment,
  FutureValue: Extended; PaymentTime: TPaymentTime): Extended;
var
  Annuity, CompoundRN: Extended;
begin
  if Rate <= -1.0 then ArgError('PresentValue');
  Annuity := Annuity2(Rate, NPeriods, PaymentTime, CompoundRN);
  if CompoundRN > 1.0E16 then
    PresentValue := -(Payment / Rate * Integer(PaymentTime) * Payment)
  else
    PresentValue := (-Payment * Annuity - FutureValue) / CompoundRN
end;

function GetRoundMode: TFPURoundingMode;
begin
  Result := TFPURoundingMode((Get8087CW shr 10) and 3);
end;

// 8087 协处理器控制字的状态
function SetRoundMode(const RoundMode: TFPURoundingMode): TFPURoundingMode;
var
  CtlWord: Word;
begin
  CtlWord := Get8087CW;
  Set8087CW((CtlWord and $F3FF) or (Ord(RoundMode) shl 10));
  Result := TFPURoundingMode((CtlWord shr 10) and 3);
end;

function GetPrecisionMode: TFPUPrecisionMode;
begin
  Result := TFPUPrecisionMode((Get8087CW shr 8) and 3);
end;

function SetPrecisionMode(const Precision: TFPUPrecisionMode): TFPUPrecisionMode;
var
  CtlWord: Word;
begin
  CtlWord := Get8087CW;
  Set8087CW((CtlWord and $FCFF) or (Ord(Precision) shl 8));
  Result := TFPUPrecisionMode((CtlWord shr 8) and 3);
end;

function GetExceptionMask: TFPUExceptionMask;
begin
  Byte(Result) := Get8087CW and $3F;
end;

function SetExceptionMask(const Mask: TFPUExceptionMask): TFPUExceptionMask;
var
  CtlWord: Word;
begin
  CtlWord := Get8087CW;
  Set8087CW( (CtlWord and $FFC0) or Byte(Mask) );
  Byte(Result) := CtlWord and $3F;
end;

// 清除异常
procedure ClearExceptions;
asm
  fclex
end;

{
浮点指令
对下面的指令先做一些说明:
st(i):代表浮点寄存器,所说的出栈、入栈操作都是对st(i)的影响
src,dst,dest,op等都是指指令的操作数,src表示源操作数,dst/dest表示目的操作数
mem8,mem16,mem32,mem64,mem80等表示是内存操作数,后面的数值表示该操作数的内存位数(8位为一字节)
x <- y 表示将y的值放入x,例st(0) <- st(0) - st(1)表示将st(0)-st(1)的值放入浮点寄存器st(0)

1. 数据传递和对常量的操作指令

指令格式
指令含义
执行的操作

FLD src   装入实数到st(0)   st(0) <- src (mem32/mem64/mem80)
FILD src  装入整数到st(0)  st(0) <- src (mem16/mem32/mem64)
FBLD src  装入BCD数到st(0)   st(0) <- src (mem80)
FLDZ  将0.0装入st(0)  st(0) <- 0.0
FLD1  将1.0装入st(0)  st(0) <- 1.0

FLDPI
将pi装入st(0)
st(0) <- ?(ie, pi)

FLDL2T
将log2(10)装入st(0)
st(0) <- log2(10)

FLDL2E
将log2(e)装入st(0)
st(0) <- log2(e)

FLDLG2
将log10(2)装入st(0)
st(0) <- log10(2)

FLDLN2
将loge(2)装入st(0)
st(0) <- loge(2)

FST dest
保存实数st(0)到dest
dest <- st(0) (mem32/mem64)

FSTP dest

dest <- st(0) (mem32/mem64/mem80);然后再执行一次出栈操作

FIST dest
将st(0)以整数保存到dest
dest <- st(0) (mem32/mem64)

FISTP dest

dest <- st(0) (mem16/mem32/mem64);然后再执行一次出栈操作

FBST dest
将st(0)以BCD保存到dest
dest <- st(0) (mem80)

FBSTP dest

dest<- st(0) (mem80);然后再执行一次出栈操作

2.比较指令

指令格式
指令含义
执行的操作

FCOM
实数比较
将标志位设置为 st(0) - st(1) 的结果标志位

FCOM op
实数比较
将标志位设置为 st(0) - op (mem32/mem64)的结果标志位

FICOM op
和整数比较
将Flags值设置为st(0)-op 的结果op (mem16/mem32)

FICOMP op
和整数比较
将st(0)和op比较 op(mem16/mem32)后;再执行一次出栈操作

FTST
零检测
将st(0)和0.0比较

FUCOM st(i)

比较st(0) 和st(i) [486]

FUCOMP st(i)

比较st(0) 和st(i),并且执行一次出栈操作

FUCOMPP st(i)

比较st(0) 和st(i),并且执行两次出栈操作

FXAM

Examine: Eyeball st(0) (set condition codes)

3.运算指令

指令格式
指令含义
执行的操作

加法

FADD 加实数  st(0) <-st(0) + st(1)
FADD src  st(0) <-st(0) + src (mem32/mem64)

FADD st(i),st

st(i) <- st(i) + st(0)

FADDP st(i),st  st(i) <- st(i) + st(0);然后执行一次出栈操作

FIADD src
加上一个整数
st(0) <-st(0) + src (mem16/mem32)

减法

FSUB
减去一个实数
st(0) <- st(0) - st(1)

FSUB src

st(0) <-st(0) - src (reg/mem)

FSUB st(i),st

st(i) <-st(i) - st(0)

FSUBP st(i),st

st(i) <-st(i) - st(0),然后执行一次出栈操作

FSUBR st(i),st
用一个实数来减
st(0) <- st(i) - st(0)

FSUBRP st(i),st

st(0) <- st(i) - st(0),然后执行一次出栈操作

FISUB src
减去一个整数
st(0) <- st(0) - src (mem16/mem32)

FISUBR src
用一个整数来减
st(0) <- src - st(0) (mem16/mem32)

乘法

FMUL
乘上一个实数
st(0) <- st(0) * st(1)

FMUL st(i)

st(0) <- st(0) * st(i)

FMUL st(i),st

st(i) <- st(0) * st(i)

FMULP st(i),st

st(i) <- st(0) * st(i),然后执行一次出栈操作

FIMUL src
乘上一个整数
st(0) <- st(0) * src (mem16/mem32)

除法

FDIV
除以一个实数
st(0) <-st(0) /st(1)

FDIV st(i)

st(0) <- st(0) /t(i)

FDIV st(i),st

st(i) <-st(0) /st(i)

FDIVP st(i),st

st(i) <-st(0) /st(i),然后执行一次出栈操作

FIDIV src
除以一个整数
st(0) <- st(0) /src (mem16/mem32)

FDIVR st(i),st
用实数除
st(0) <- st(i) /st(0)

FDIVRP st(i),st

FDIVRP st(i),st

FIDIVR src
用整数除
st(0) <- src /st(0) (mem16/mem32)

FSQRT
平方根
st(0) <- sqrt st(0)

FSCALE
2的st(0)次方
st(0) <- 2 ^ st(0)

FXTRACT
Extract exponent:
st(0) <-exponent of st(0); and gets pushed

st(0) <-significand of st(0)

FPREM
取余数
st(0) <-st(0) MOD st(1)

FPREM1
取余数(IEEE),同FPREM,但是使用IEEE标准[486]

FRNDINT
取整(四舍五入)
st(0) <- INT( st(0) ); depends on RC flag

FABS
求绝对值
st(0) <- ABS( st(0) ); removes sign

FCHS
改变符号位(求负数)
st(0) <-st(0)

F2XM1
计算(2 ^ x)-1
st(0) <- (2 ^ st(0)) - 1

FYL2X
计算Y * log2(X)
st(0)为Y;st(1)为X;将st(0)和st(1)变为st(0) * log2( st(1) )的值

FCOS
余弦函数Cos
st(0) <- COS( st(0) )

FPTAN
正切函数tan
st(0) <- TAN( st(0) )

FPATAN
反正切函数arctan
st(0) <- ATAN( st(0) )

FSIN
正弦函数sin
st(0) <- SIN( st(0) )

FSINCOS
sincos函数
st(0) <-SIN( st(0) ),并且压入st(1)

st(0) <- COS( st(0) )

FYL2XP1
计算Y * log2(X+1)
st(0)为Y; st(1)为X; 将st(0)和st(1)变为st(0) * log2( st(1)+1 )的值

处理器控制指令

FINIT
初始化FPU

FSTSW AX
保存状态字的值到AX
AX<- MSW

FSTSW dest
保存状态字的值到dest
dest<-MSW (mem16)

FLDCW src
从src装入FPU的控制字
FPU CW <-src (mem16)

FSTCW dest
将FPU的控制字保存到dest
dest<- FPU CW

FCLEX
清除异常

FSTENV dest
保存环境到内存地址dest处 保存状态字、控制字、标志字和异常指针的值

FLDENV src
从内存地址src处装入保存的环境

FSAVE dest
保存FPU的状态到dest处 94字节

FRSTOR src
从src处装入由FSAVE保存的FPU状态

FINCSTP
增加FPU的栈指针值
st(6) <-st(5); st(5) <-st(4),...,st(0) <-?

FDECSTP
减少FPU的栈指针值
st(0) <-st(1); st(1) <-st(2),...,st(7) <-?

FFREE st(i)
标志寄存器st(i)未被使用

FNOP
空操作,等同CPU的nop
st(0) <-st(0)

WAIT/FWAIT
同步FPU与CPU:停止CPU的运行,直到FPU完成当前操作码

FXCH
交换指令,交换st(0)和st(1)的值
st(0) <-st(1)

st(1) <- st(0)

}

end.




一壶清茶煮青春.
Top
kendling (小冬)
高级版主
Rank: 8Rank: 8
MyvNet


Medal No.1  
UID 703
Digest Posts 5
Credits 978
Posts 580
点点分 978
Reading Access 101
Registered 2005-2-18
Location 广东
Status Offline
Post at 2007-11-21 16:07  Profile | Site | Blog | P.M.  | QQ | Yahoo!
增加中文翻译?




小冬
http://MyvNet.com
Top
Passion (LiuXiao)
管理员
Rank: 9Rank: 9Rank: 9


UID 359
Digest Posts 19
Credits 6838
Posts 3591
点点分 6838
Reading Access 102
Registered 2004-3-28
Status Offline
Post at 2007-11-21 16:26  Profile | Blog | P.M. 
写这个应该挺辛苦的。
发现里头有一堆函数还从没用到过。
Top
 




All times are GMT++8, the time now is 2024-11-24 23:18

    本论坛支付平台由支付宝提供
携手打造安全诚信的交易社区 Powered by Discuz! 5.0.0  © 2001-2006 Comsenz Inc.
Processed in 0.034294 second(s), 7 queries , Gzip enabled

Clear Cookies - Contact Us - CnPack Website - Archiver - WAP